Entanglement, Disentanglement and Wigner Functions

نویسندگان

  • Yorick Hardy
  • Willi-Hans Steeb
  • Ruedi Stoop
چکیده

Entangled quantum states are an important component of quantum computing techniques such as quantum error-correction, dense coding and quantum teleportation. We describe how to generate fully entangled states in the Hilbert space C N C N starting from a unitary matrix and show that they form an orthonormal basis in this space. Disentanglement is also discussed. Moreover we also calculate the Wigner function of fully entangled states. Entanglement [1–7] is the characteristic trait of quantum mechanics which enforces its entire departure from classical lines of thought. It is nowadays viewed as a resource for certain tasks that can be performed faster or in a more secure way than classically. Einstein et al. [8] discussed entanglement for infinite-dimensional systems (position and momentum). Bohm [9] described the case for finite-dimensional systems. We describe how to generate fully entangled states in the finite-dimensional Hilbert space C N C N 1⁄4 C N 2 starting from the N N primary permutation matrix and show that they form an orthonormal basis in this space. We also describe how to disentangle the generalized Bell states using the GXOR-operator. Furthermore the Wigner operator for finite-dimensional systems is calculated for the Bell states. We consider entanglement of pure states. For example in the Hilbert space C 4 the Bell states j þi 1⁄4 1ffiffiffi 2 p ðj0i j0i þ j1i j1iÞ; j i 1⁄4 1ffiffiffi 2 p ðj0i j0i j1i j1iÞ; j þi 1⁄4 1ffiffiffi 2 p ðj0i j1i þ j1i j0iÞ; j i 1⁄4 1ffiffiffi 2 p ðj0i j1i j1i j0iÞ are fully entangled states and form an orthonormal basis in C : Here fj0i; j1ig is an arbitrary orthonormal basis in the Hilbert space C : If we choose j0i 1⁄4 e cos sin ! ; j1i 1⁄4 e sin cos ! we obtain j þi :1⁄4 1ffiffiffi 2 p e 0 0 1 0 BBBBB@ 1 CCCCCA ; j i :1⁄4 1ffiffiffi 2 p e cosð2 Þ e sinð2 Þ e sinð2 Þ cosð2 Þ 0 BBBBB@ 1 CCCCCA ; j þi :1⁄4 1ffiffiffi 2 p e sinð2 Þ e cosð2 Þ e cosð2 Þ sinð2 Þ 0 BBBBB@ 1 CCCCCA ; j i :1⁄4 1ffiffiffi 2 p 0 e e 0 0 BBBBB@ 1 CCCCCA : If we choose 1⁄4 0 and 1⁄4 0 then fj0i; j1ig is the standard basis in C : Consider the Hilbert space C : Let fj ki : k 1⁄4 0; 1; . . . ;N 1g ð1Þ be an orthonormal basis in C : Thus h jj ki 1⁄4 jk and X N 1 k1⁄40 j kih kj 1⁄4 IN ð2Þ where IN is the N N unit matrix. The last relation is the completeness relation. Next we define the matrix

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entanglement versus Disentanglement: Quantum Cryptography

In alternative disentanglement based quantum cryptosystem, classical channel cannot be used when the system is protected by no-cloning principle. But for the similar security criterion , it is discussed that classical channel can be used in alternative entanglement based quantum cryptosystem. A prototype of conventional entanglement based cryptosystem is recovered from alternative entanglement ...

متن کامل

Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement.

متن کامل

ar X iv : q ua nt - p h / 99 03 01 5 v 2 2 0 M ar 1 99 9 Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement. 1 email: [email protected]

متن کامل

ar X iv : q ua nt - p h / 99 03 01 5 v 1 4 M ar 1 99 9 Disentanglement of pure bipartite quantum states by local cloning

We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement.

متن کامل

Quantum disentanglement and computation

Entanglement is essential for quantum computation. However, disentanglement is also necessary. It can be achieved without the need of classical operations (measurements). Two examples are analyzed: the discrete Fourier transform and error correcting codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005